Chemistry 2006 (Compartment Outside Delhi)

General Instructions:

- 1. All questions are compulsory.
- 2. Marks for each question are indicated against it
- 3. Question numbers 1 to 5 are very short answer questions, carrying 1 mark each. Answer these in one word or about one sentence each.
- 4. Question numbers 6 to 12 are short answer questions, carrying 2 marks each. Answer these in about 30 words each.
- 5. Question numbers 13 to 24 are a/so short answer questions, carrying 3 marks each. Answer these in about 40 words each.
- 6. Question numbers 25 to 27 are long answer questions, carrying 5 marks each. Answer these in about 70 words each.
- 7. Use Log Tables, if necessary. Use of calculators is not permitted.

CH₃CH (NO₂) CH₂CH₃

Q. 5. Complete the reaction equation

 $C_6H_6 + RCOCI - ---- > \dots$

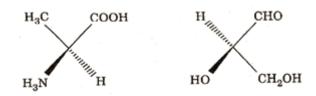
Q. 6. On what basis can you say that in an atom an s-orbital is spherical and the p-orbitals are dumbbell shaped? (2)

Q. 7. Prove that in a process heat change at constant pressure is a measure of the change in enthalpy. **(2)**

Q. 8. What happens when

- i. Tin dissolves in a hot alkali solution?
- ii. Xe0₃ reacts with an aqueous alkali solution? Write the complete chemical equation in each case.

(2)


0r

Write balanced chemical equations for the following processes

- i. SiO_2 is treated with an excess of KOH.
- ii. Bi_2O_3 is treated with conc. HNO₃.

Q. 9. How is the variability in oxidation states of the tansition elements different from that of the non-transition elements? Illustrate with examples. (2)

Q. 10. Convert the following wedge-and-dash formula to Fischer projection formula. (2)

Q.11. How are the following conversions carried out

- i. Propene to porpan-2-ol
- ii. Phenol to salicylaldehyde

Q. 12. Differentiate between a homopolymer and a copolymer. Give one example of each. (2)

Q. 13. Compare the relative stability of the following species and indicate their magnetic (diamagnetic or paramagnetic) characters $O_2 +, O_2 -$ and $O_2^2 -$ Is only bond order a quantitative measure of the bond strength in a species? (3)

0r

Draw the molecular orbital diagrams for the species N_2^+ and N_2^{--} . Comment on the magnetic property and bond strength of each.

Q. 14. What is a semiconductor? Describe two main types of semiconductors, giving examples and their distinctive features (3)

Q. 15. A 0.2 per cent aqueous solution of a non-volatile solute exerts a vapour pressure of 1.004 bar at 1000 C. What is the molar mass of the solute? (Given: Vapour pressure of pure water at 100°C is 1.013 bar and molar mass of water is 18 g mol^{-1}) (3)

Q. 16. Calculate $\Delta_r G^\circ$ and the equilibrium constant for the following reaction at 298 K and 1 atmosphere pressure: CO (g) + 3 H₂ (g) \leftrightarrow CH₄ (g) + H₂ O (*l*) (Given that at 298 K Δ_r H° for the reaction is — 250.3 kJ mol ⁻⁻¹ and Δ_f S° for the reaction is — 333.3 JK ⁻⁻¹ and R = 8.314 J K ⁻⁻¹ mol ⁻⁻¹ (3)

Q. 17. At 300° C the thermal dissociation of HI is 20%. What will be the equilibrium concentrations of H₂ and l₂ in the system H₂ + l₂ \leftrightarrow 2Hl at this temperature if the equilibrium concentration of HI is found to be 0.96 mol L⁻¹? (3)

(2)

Q.18. State what you will observe when

i. an electrolyte is added to a colloidal solution,

ii.	an electric current is passed through a colloidal solution,	Jahun
iii.	a beam of light is passed across pure water and then across a colloidal solution of su when you are not in the path of light.	(3)
Q.19.	How would you account for the following observations:	(3)
i. ii. iii.	The enthalpies of atomisation of the transition metals are high. Of the lanthanoids only Cerium (Z = 58) is known to exhibit quite stable + 4 state in Sodium thiosulphate solution is used in the 'fixing' step of photography.	solutions.
Q. 20	. Draw the structures of the following:	(3)
i. ii. iii.	Cis-dichlorotetracyanochromate (III) Pentaamminenitrito-N-cobalt (III) Hexamethyldialuminium	
Q. 21	. Write the product nucleides for the following radiaction decays:	(3)
i. ii.	²³⁸ U undergoes α - decay ²³⁹ ₉₃ Np undergoes β^- – decay ¹³³ Np undergoes β^+ – emission	

iii. $\int_{56}^{150} Np \text{ undergoes } \beta^+ - emission$ (Note: You can put 'X' for the symbol if it is not known to you).

Q. 22. How would you bring about the following conversions:

(3)

- i. Propanal to butanone
- ii. Benzaldehyde to benzophenone
- iii. Benzoyl chloride to benzonitrileGive the complete chemical equation and reaction conditions in each case.

Q. 23.

a. Explain the following observations:

 i. Primary amines are higher boiling than comparable tertiary amines.
 ii. Aromatic amines are less basic than aliphatic amines.
 b. Mention two important uses of N, N-Dimethyl aniline (DMA).
 (3)

 Q. 24. Describe the following with examples:

 i. Tranquilizers
 ii. Preservatives
 iii. Biliquid propellants

Q. 25.

a. State the products of electrolysis obtained on the cathode and the anode in the following cases

- i. A dilute solution of H_2SO_4 with platinum electrodes
- ii. An aqueous solution of AgNO₃ with silver electrodes
- b. Write the cell formulation and calculate the standard cell potential of the galvanic celL in which the following reaction takes place: Fe^{2+} (aq) + Ag⁺ (aq) \rightarrow Fe³⁺ (aq) + Ag (s) Calcuate $\Delta_f G^\circ$ for the above reaction. [Given: $E^\circ_{Ag^+/Ag} = + 0.80$ V and $E^\circ_{Fe^3^+/Fe^2^+} = + 0.77$ V; F = 96500 C mol⁻¹] (2, 3)

0r

- a. What are fuel cells? Write the electrode reactions of a fuel cell which uses the reaction of hydrogen with oxygen.
- b. Write the cell formulation and calculate the standard cell potential of the galvanic cell which uses the following reaction in its operation:
 2 Cr (s) + 3 Cd²⁺ (aq) → 2 Cr ³⁺ (aq) + 3 Cd (s)

Calculate $\Delta_r G^0$ for the above reaction. [Given: $E^0_{Cr}3+_{/Cr} = -0.74$ V and $E^0_{cd}2+_{/Cd} = -0.40$ V; F = 96500 C mol⁻¹]

Q. 26.

- a. How would you account for the following:
 - i. Tin (II) is a stronger reducing agent than lead (II).
 - ii. Enthalpy of dissociation for F_2 is much less than that for Cl_2 .
 - iii. Sulphur in vapour state exhibits paramagnetism.
- b. Draw the structures of the following molecules:
 - i. H₃PO₂
 - ii. XeOF₄

0r

- a. Explain the following observations:
 - i. Anhydrous aluminium chloride has a lower melting point than aluminium fluoride
 - ii. Bismuth oxide is not acidic in any of its reactions
 - iii. HF is weaker acid than HI in aqueous solutions
- b. Draw the structures of the following molecules
 - i. XeF₄ ii. SF₄

Q. 27.

- a. Enumerate the structural differences between DNA and RNA. Write down the structure of a nucleoside which is present only in RNA.
- b. What are reducing sugars ? Give an example each of a reducing sugar and a non-reducing sugar.
 (3, 2)

0r

- a. Name the three classes of lipids and give one example of each class.
- b. Explain the term mutarotation giving an example.