Marking Scheme
Chemistry
Delhi- SET (56/1/2)

\begin{tabular}{|c|c|c|}
\hline 1 \& 4 \& 1 \\
\hline 2 \& In primary battery the reaction occurs only once and after use over a period of time becomes dead. Leclanche cell or Dry cell is an example. \& \(1 / 2+1 / 2\) \\
\hline 3 \& Q. 3 Set 1 \& 1 \\
\hline 4 \& Q. 4 Set 1 \& 1 \\
\hline 5 \& Q. 5 Set 1 \& 1 \\
\hline 6. \& Pentane -2, 4 -dione \& 1 \\
\hline 7. \& Q. 7 Set 1 \& 1 \\
\hline 8. \& Q. 8 Set 1 \& 1 \\
\hline 9 \& \begin{tabular}{l}
Raoult's law states that for a solution of volatile liquids, the partial vapour pressure of each component in the solution is directly proprtional to its mole fraction. When the solute-solvent interaction is weaker than those between the solute-solute and solvent-solvent molecules than solution shows positive deviation from Raoults law because the partial pressure of each component is greater. \\
ex. mixture of ethanol and acetone or carbondisulphide and acetone behave in this manner. \\
When the solute-solvent interaction is stronger than those between the solute-solute and solvent-solvent molecules than solution shows negative deviation from Raoults law and the partial vapour pressure of each component is lower. \\
ex. mixture of chloroform and acetone behave in this manner. \\
(Note: Explaination with suitable example of any one of the two.) \\
OR \\
The extra pressure applied on the solution side that just stops the flow of solvent to solution through semi-permeable membrane is called osmotic pressure of the solution. \\
Here \(\pi\) is the osmotic pressure and R is the gas constant.
\[
\begin{gathered}
\pi=\left(\boldsymbol{n}_{2} / V\right) \boldsymbol{R} \boldsymbol{T} \\
\pi V=\frac{w_{2} R T}{M_{2}} \\
\text { or } M_{2}=\frac{w_{2} R T}{\pi V}
\end{gathered}
\] \\
Thus knowing the quantities \(\mathrm{w}_{2}, \mathrm{~T}, \pi\) and V we can calculate the molar mass of the solute.
\end{tabular} \& 1

1
$1 / 2$

$1 / 2$
$1 / 2$
1
1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 10 \& $$
\begin{aligned}
\Lambda_{\mathrm{m}} & =\frac{\mathrm{Kx1000cm}^{3} \mathrm{~L}^{-1}}{\mathrm{c}} \\
& =\frac{0.0248 \mathrm{~S} \mathrm{~cm}^{-1} \mathrm{x} 1000 \mathrm{~cm}^{3} \mathrm{~L}^{-1}}{0.20 \mathrm{~mol} \mathrm{~L}^{-1}}=\frac{24.8 \mathrm{~S} \mathrm{~cm}^{2}}{0.20 \mathrm{~mol}} \\
\Lambda_{\mathrm{m}} & =124 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$ \& 1

1 \\

\hline 11 \& | The galvanic cell is depicted as: $\mathrm{Zn}(\mathrm{s})\left\|\mathrm{Zn}^{2+}(\mathrm{aq}) \\| \mathrm{Ag}^{+}(\mathrm{aq})\right\| \mathrm{Ag}(\mathrm{s})$ |
| :--- |
| (i) Zinc electrode is negatively charged |
| (ii) The ions formed i.e Zn^{2+} and Ag^{+}in the solution are the carriers of the current within the cell. |
| (iii) At anode: $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$ |
| At cathode: $2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \\

\hline 12 \& Q. 14 Set 1 \& 2 \\
\hline 13 \& Q. 15 Set 1 \& 2 \\

\hline 14 \& | (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}+\mathrm{KCl}+\mathrm{N}_{2}$ |
| :--- |
| (ii) $\mathrm{BrCH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$ | \& $1+1$ \\

\hline 15 \& | (i) Aryl halides are less ractive towards nucleophilic substitution because of any of the following reasons |
| :--- |
| (i) Resonance effect stabilization |
| (ii) sp^{2} hybridization in haloarenes and sp^{3} in haloalkanes. |
| (iii) Instability of phenyl cation |
| (iv) possible repulsion |
| (ii) |
| Undergoes $\mathrm{S}_{\mathrm{N}} 1$ reaction faster because of the stability of secondary carbocation. | \& 1

$$
1 / 2+1 / 2
$$ \\

\hline 16 \& Q. 18 Set 1 \& 2 \\
\hline 17 \& Q. 16 Set 1 \& 2 \\
\hline 18 \& Q. 17 Set 1 \& 2 \\
\hline 19 \& Q. 21 Set 1 \& 3 \\
\hline 20 \& Q. 20 Set 1 \& 3 \\
\hline 21 \& Q. 19 Set 1 \& 3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 22 \& Q. 23 Set 1 \& 3 \\
\hline 23 \& Q. 22 Set 1 \& 3 \\
\hline 24 \& Q. 26 Set 1 \& 3 \\
\hline 25 \& Q. 27 Set 1 \& 3 \\
\hline 26 \& Q. 25 Set 1 \& 3 \\
\hline 27 \& Q. 24 Set 1 \& 3 \\
\hline \[
28
\] \& \begin{tabular}{l}
(a) Half life of a First order reaction:
\[
\begin{aligned}
\& k=\frac{2.303}{t} \log \frac{[R]_{0}}{[R]} \\
\& \text { at } t_{1 / 2} \quad[R]=\frac{[R]_{0}}{2}
\end{aligned}
\] \\
So, the above equation becomes
\[
k=\frac{2.303}{t_{1,2}} \log \frac{[R]_{0}}{\left[R l_{1} 2\right.}
\] \\
or \(t_{1 / 2}=\frac{2.303}{k} \log 2\)
\[
t_{1 / 2}=\stackrel{2.303}{k} \times 0.301
\]
\[
t_{1 / 2}=\frac{0.693}{k}
\] \\
(b) \(2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})\)
\[
\begin{aligned}
\text { Rate }= \& \frac{-\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{NH}_{3}\right]^{\mathrm{O}}=2.5 \times 10^{-4} \mathrm{Ms}^{-1} \\
\& -\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=+\frac{\mathrm{d}\left[\mathrm{~N}_{2}\right]}{\mathrm{dt}}=+\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}
\end{aligned}
\] \\
Rate of production of \(\mathrm{N}_{2}=+\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=-\frac{1}{2} \frac{\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}\)
\[
=\frac{1}{2} \times\left(2.5 \times 10^{-4} \mathrm{Ms}^{-1}\right)=1.25 \times 10^{-4} \mathrm{Ms}^{-1}
\]
\[
\begin{aligned}
\text { Rate of production of hydrogen } \& =\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=-\frac{3}{2}\left[\mathrm{NH}_{3}\right] \\
\& =\frac{3}{2} \times\left(2.5 \times 0^{-4} \mathrm{Ms}^{-1}\right) \\
\& =3.75 \times 10^{-4} \mathrm{Ms}^{-1}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\) \\
\hline \& \begin{tabular}{l}
or
\[
\begin{aligned}
\text { Rate }= \& \frac{-\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{NH}_{3}\right]^{\mathrm{O}}=2.5 \times 10^{-4} \mathrm{Ms}^{-1} \\
\text { Rate }= \& -\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}} \frac{+}{\mathrm{d}}\left[\mathrm{~N}_{2}\right]=+\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}
\end{aligned}
\] \\
Rate of production of \(\mathrm{N}_{2}=+\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\) Rate \(=2.5 \times 10^{-4} \mathrm{Ms}^{-}\)
\end{tabular} \& 1

1 \\
\hline
\end{tabular}

29 $*$	(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ $\xrightarrow{(\mathrm{O})} \mathrm{CH}_{3} \mathrm{CHO}^{(i i) \mathrm{H}_{2} \mathrm{O}}$ Ethomol (ii) $\Leftrightarrow \frac{\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{O}\right.}{\text { anhed } \cdot \mathrm{AlCl}_{3}} \underset{\mathrm{COCH}}{3}$ (iii)	$1 \times 3=3$
	(or any other suitable method) (a) (i)Decarboxylation: Carboxylic acids lose carbon dioxide to form hydrocarbons when their sodium salts are heated with sodalime. The reaction is known as decarboxylation. $\mathrm{R}-\mathrm{COONa} \xrightarrow[\text { Heat }]{\mathrm{NaOH} \& \mathrm{CaO}} \mathrm{R}-\mathrm{H}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ (ii) Cannizzaro reaction: Aldehydes which do not have an α-hydrogen atom, uhdergo self oxidation and reduction reaction on treament with concentrated alkali. (or any other suitable reaction) (Note: Award full marks for correct chemical equation;award $1 / 2$ mark if only statement is written)	1+1

