

MODEL TEST PAPER (III)

Chemistry (Theory)

Time: 3 hours Total Marks: 70

General Instruction

- (i) All questions are compulsory.
- (ii) Question number 1 to 8 are very short answer questions, carrying 1 mark each. Answer these in one word or about one sentence each.
- (iii) Question number 9 to 18 are short answer questions, carrying 2 marks each. Answer these in about 30 words each.
- (iv) Question number 19 to 27 are short answer questions, carrying 3 marks each. Answer these in about 40 words each.
- (v) Question number 28 to 30 are long answer questions, carrying 5 marks each. Answer these in about 70 words each.
- (vi) Use log table, if necessary.
- (vii) Use of calculator is not permitted.
- Wirte a point of distinction between a metallic solid and an ionic solid other than metallic lustre.
- 2. Which one of $PCl_{\underline{a}}^+$ and $PCl_{\underline{a}}^-$ is not likely to exist and why?
- 3. What is the role of graphite in the electrometallurgy of aluminium? 1
- 4. Arrange the following compounds in an increasing order of their reactivity in mucleophilic addition reactions: ethanal, propanal, propanone, butanone.
- 5. Draw the structural formula of 2-methylpropan -2-ol molecule.

$$CH_2 = C - CH_2Br$$

$$CH_3$$

Give the IUPAC name of the following compound.

$$CH_2 = C - CH_2Br$$
 CH_3

- 7. Define the term, 'homopolymerisation' giving an example.
- 8. Arrange the following in the dereaing order of their basic strength in aqueous solutions.

9. A 1.00 molal aqueous solution of trichloroacetic acid (CCl₃COOH) is heated to its boiling point. The solution has the boiling point of 100.18 °C. Determine the van't Hoff factor for trichloroacetic acid. (K_b for water = 0.512 K kg mol⁻¹)

OR

Define the following terms:

- (i) Mole fraction
- (ii) Isotonic solutions
- (iii) Van't Hoff factor
- (iv) Ideal solution
- 11. Describe a conspicuous change observed when
 - (i) a solution of NaCl is added to a sol of hydrated ferric oxide.
 - (ii) a beam of light is passed through a solution of NaCl and then through a sol.
- 12. What is meant by caugulation of a colloidal solution? Describe briefly any three methods by which coagulation of lyophobic sols can be carried out.
- 13. Describe the following:
 - (i) The role of cryolite in electro metallurgy of aluminium.
 - (ii) The role of carbon monoxide in the refining of crude nickel.
- 14. What is meant by (i) peptide linkage (ii) biocatalysts?
- 15. Explain the following giving an appropriate reason in each case.
 - (i) O_2 and F_2 both stabilize higher oxidation states of metals but O_2 exceeds F_2 in doing so.
 - (ii) Structures of Xenon fluorides cannot be explained by Valence Bond approach.
- 16. Complete the following chemical equations :
 - (i) $\operatorname{Cr_2O^2_7} + \operatorname{H}^+ + \operatorname{I}^- \rightarrow$
 - (ii) $MnO_4^- + NO_2^- + H^+ \rightarrow$
- 17. Draw the structure of the monomer for each of the following polymers:
 - (i) Nylon 6
 - (ii) Polypropene

- 18. Write the main structural difference between DNA and RNA. Of the two bases, thymine and uracil, which one is present in DNA?
- 19. Tungsten crystallizes in body centred cubic unit cell. If the edge of the unit cell is 316.5 pm, what is the radius of tungsten atom?

OR

Iron has a body centred cubic unit cell with a cell dimension of 286.65 pm. The density of iron is 7.874 g cm⁻³. Use this information to calculate Avogadro's number. (At mass of Fe=55.845u).

20. A solution of glycerol (C₃H₃O₃) in water was prepared by dissolving some glycerol in 500 g of water. This solution has a boiling point of 100.42 °C while pure water boils at 100°C. What mass of glycerol was dissolved to make the solution?

 $(K_b \text{ for water} = 0.512 \text{ K kg mol}^{-1})$

21. For reaction

$$2NO_{(g)} + Cl_{2(g)} 2NOCl_{(g)}$$

the following data were collected. All the measurements were taken at 263 K:

Experiment	Initial [NO]/(M)	Initial $[Cl_2]/(M)$	Initial rate of disappearance
No.			of Cl ₂ (M/min)
1	0.15	0.15	0.60
2	0.15	0.30	1.20
3	0.30	0.15	2.40
4	0.25	0.25	?

- (a) Write the expression for rate law.
- (b) Calculate the value of rate constant and specify its units.
- (c) What is the initial rate of disappearnce of Cl₂ in exp. 4?
- 22. State a reason for each of the following situations :
 - (i) Co²⁺ is easily oxidized to Co³⁺ in presence of a strong ligand.
 - (ii) CO is a stronger complexing reagent than NH₃.
 - (iii) The molecular shape of Ni(CO)₄ is not the same as that of [Ni(CN)₄]²⁻

- 23. How would you account for the following?
 - (i) With the same d-orbital configuration (d^4) Cr^{2+} is a reducing agent while Mn^{3+} is an oxidizing agent.
 - (ii) The actionoids exhibit a larger number of oxidation states than the corresponding members in the lanthanoid series.
 - (iii) Most of the transition metal ions exhibit characteristic in colours in aqueous solutions.
- 24. Write chemical equations for the following onversions:
 - (i) nitrobenzene to benzonic acid.
 - (ii) benzyl chloride to 2-phenylethanamine.
 - (iii) aniline to benzyl alcohol.
- 25. What ate the following substances? Give one example of each one of them.
 - (i) Tranquilizers
 - (ii) Food preservatives
 - (iii) Synthetic detergents
- 26. Draw the structure and name the product formed if the following alcohols are oxidized. Assume that an excess of oxidizing agent is used.
 - (i) CH₃CH₂CH₂CH₂OH
 - (ii) 2-butenol
 - (iii) 2-methyl-1-propanol
- 27. Although chlorine is an electron withdrawing group, yet it is ortho-, paradirecting in electrophilic aromatic substitution reaction. Explain why it is so?
- 28. (a) complete the following chemical reaction equations:
 - (i) $P_4 + SO_2CI_2 \longrightarrow$
 - (ii) $XeF_6 + H_2O \longrightarrow$
 - (b) Predict the shape and the asked angle (90° or more or less) in each of the following cases :

179

(i) SO_3^{2-} and the angle O - S - O

- (ii) CIF_3 and the angle F CI F
- (iii) XeF_2 and the angle F Xe F

OR

- (a) Complete the following chemical equations :
 - (i) NaOH + $\operatorname{Cl}_2 \longrightarrow$ (hot and conc.)
 - (ii) $XeF_4 + O_2F_2 \longrightarrow$
- (b) Draw the sturcture of the following molecules:
 - (i) H_3PO_2
 - (ii) $H_2S_2O_7$
 - (iii) XeOF₄
- 29. (a) What type of a batter is lead storage batter? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage batter when current is drawn from it.
 - (b) In the button cell, widely used in watches, the following reaction takes place

$$Zn_{(s)} + Ag_2O_{(s)} + H_2O(I) \rightarrow Zn_{(aq)}^{2+} + 2Ag_{(s)} + 2OH_{(aq)}^{-}$$

Determine E^{θ} and ΔG° for the reaction.

(given :
$$E^{\varnothing}_{Ag^{+}/Ag} = +0.80 \,\text{V}; \ E^{\varnothing}_{Zn^{2+}/Zn} = -0.76 \,\text{V}$$

OR

- (a) Define molar conductivity of a solution and explain how molar conductivity changes with change in concentration of solution for a weak and a strong electrolyte.
- (b) The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500 Ω . What is the cell constant if the conductivity of 0.001 M KCl solution at 298 K is 0.146 \times 10⁻³ S cm⁻¹?
- 30. Give a plausible explanation for each one of the following:
 - (i) There are two NH_2 groups in semicarbazide. However, only one such group is involved in the formation of semicarbazones.
 - (ii) Cyclohexanone forms cyanohydrin in good yield but 2, 4, 6-trimethylcyclohexanone does not.

(b) An organic compound with molecular formula $C_9H_{10}O$ forms 2, 4, -DNP derivative, reduces Tollens' reagent and undergoes Cannizzaro's reaction. On vigorous oxidation it gives 1, 2-benzenedicarboxylic acid. Idenfify the compound.

OR

- (a) Give chemical tests to distinguish between
 - (i) phenol and benzoic acid
 - (ii) benzophenone and acetophenone
- (b) Write the structures of the main products of following reactions :

(i)
$$+C_6H_5 COCI \xrightarrow{anhydrous AICI_3} CS_2$$

(ii)
$$H_3 C - C \equiv C - H \xrightarrow{Hg^{2+}, H_2SO_4}$$