## Class IX Maths Assignment Area, Circles \& Constructions 2012

## Topic: Linear equations in two variables

Q1. Determine the point on the graph of the linear equation $x+y=6$, whose ordinate is twice its abscissa.

Q2. How many solution(s) of the equation $3 x+2=2 x-3$ are there on the
i) Number Line
ii) Cartesian plane

Q3. Draw the graph of the equation represented by the straight line which is parallel to the $x$-axis and 3 units above it.

Q4. Find the solutions of the linear equation $x+2 y=8$, which represents a point on i) $x$ axis ii) $y$-axis

Q5. For what values of $c$, the linear equation $2 x+c y=8$ has equal values of $x$ and $y$ as its solution.

Q6. Give the geometrical interpretations of $5 x+3=3 x-7$ as an equation
i) in one variable ii) In two variables

Q7. Draw the graph of the equation $3 x+4 y=6$. At what points, the graph cut the $x$-axis and the $y$-axis.

Q8. At what point does the graph of equation $2 x+3 y=9$ meet a line which is parallel to $y$-axis at a
distance 4 units from the origin and on the right side of the $y$-axis.

## Quadrilaterals

Q9. $P$ is the mid point of side $B C$ of parallelogram $A B C D$ such that $A P$ bisects angle $A$.

Prove that $A D=2 C D$.

Q10. Prove that bisector of any two consecutive angles of parallelogram intersect at right angles.

Q11. $E$ and $F$ are respectively the midpoints of non parallel sides $A D$ and $B C$ of trapezium. Prove that $E F$ is parallel to $A B$ and $E F=1 / 2(A B+C D)$.

Q12. $A B C D$ is a rectangle in which diagonal $B D$ bisects angle $B$. Show that $A B C D$ is a Square.

Q13. Diagonals of Quadrilateral $A B C D$ bisect each other. If angle $A=35$ degree, determine angle
B.

Q14. The bisectors of angle $B$ and angle $D$ of quadrilateral $A B C D$ meet $C D$ and $A B$, produced at point $P$ and $Q$ respectively. Prove that $<P+<Q=1 / 2(<A B C+<A D C)$.

Q15. In parallelogram $A B C D, A B=10 \mathrm{~cm}, A D=6 \mathrm{~cm}$. The bisector of angle $A$ meets $D C$ in $A$. $A E$ and $B C$ produced meet at $F$. Find the length of $C F$.

Q16. Evaluate: $(5 x+1)(x+3)-8=5(x+1)(x+2)$.

## Unit- Area

Q-1: Prove that the diagonals of a parallelogram divide it into four triangles of equal areas.
Q-2: Prove that triangles on the same base and between same parallels are equal in areas.

Q-3: Prove that the three straight lines joining the mid-points of the sides of a triangle divide the triangle into four triangles of equal areas.

Q-4: $A B C D$ is trapezium with $A B$ parallel to $D C$. $A$ line parallel $A C$ intersects $A B$ and $B C$ at $X$ and $Y$ respectively. Show that area (triangle ADX) = area (triangle ACY).

Q-5: "parallelograms on the same base and between the same parallels are equal in area." Prove it.
Q-6: Prove that the triangles with equal areas and equal bases have equal corresponding altitudes.

Q-7: A diagonal of a parallelogram divides it into two triangles of equal areas. Prove it.
Q-8:Show that the area of a parallelogram is equal to the product of any of its sides and the corresponding altitude.

Q-9: If a triangle and a parallelogram are on the same base and between the same parallels, the area of the triangle is equal to half that of the parallelogram.

Q-10: Show that median of a triangle divides it into two triangles of equal areas.

## Unit: Circle

Q-1: Two circles with centres $A$ and $B$ of radii 5 cm and 3 cm touch each other internally. If the perpendicular bisector of segment $A B$ meets the bigger circle in $P$ and $Q$, find the length of $P Q$. $\underline{Q-2: ~ I n ~ a ~ c i r c l e ~ o f ~ r a d i u s ~} 5 \mathrm{~cm}, A B$ and $A C$ are two chords such that $A B=A C=6 \mathrm{~cm}$. Find the length of chord BC.

Q-3: Two circles of radii 10 cm and 8 cm intersect and the length of the common chord is 12 cm . Find the distance between their centres.

Q-4: Prove that diameter is the greatest chord in the circle.
$Q-5: A, B, C$ and $D$ are four points on a circle such that $A B=C D$. Prove that $A C=B D$.
Q-6: Prove that all the chords of a circle through a given point within it, the least is one which is bisected at the point.

Q-7: Two circles intersect at $A$ and $B$ and $A C$ and $A D$ are respectively the diameters of the circles.
Prove that $C, B$ and $D$ are collinear.
Q-8: $O$ is the circumcentre of the triangle $A B C$ and $O D$ is perpendicular on $B C$. Prove that Angle $B O D=A n g l e A$.

Q-9: Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side.

Q-10: "Angle subtended in the major segment is obtuse" Justify your answer

## Unit: Construction

Q-1: Construct a triangle $A B C$ with base $B C=4.5 \mathrm{~cm}$, angle $B=60^{\circ}$ and $A B+A C=7.1 \mathrm{~cm}$.
Q-2: Construct a triangle $A B C$ with its perimeter $=11 \mathrm{~cm}$ and base angles of $45^{\circ}$ and $60^{\circ}$.
Q-3: Construct a triangle $P Q R$ with base $P Q=4.2 \mathrm{~cm}$, angle $P=45^{\circ}$ and $P R-Q R=1.4 \mathrm{~cm}$.
Q-4: Construct a triangle ABC with base $\mathrm{AB}=4 \mathrm{~cm}$, angle $45^{\circ}$ and $\mathrm{AC}+\mathrm{BC}=7 \mathrm{~cm}$.
Q-5: Construct an triangle $A B C$ with base $B C=3.5 \mathrm{~cm}$, angle $B=60^{\circ}$ and $A B-A C=1.1 \mathrm{~cm}$.

