(1) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is

(a) \(\frac{2}{9} \) \(\frac{1}{9} \) \(\frac{8}{9} \) \(\frac{7}{9} \) \[AIEEE 2005 \]

(2) A random variable \(X \) has Poisson distribution with mean 2. Then \(P(X > 1.5) \) equals

(a) \(\frac{2}{e^2} \) \(\frac{2}{e^2} \) \(1 - \frac{3}{e^2} \) \(\frac{3}{e^2} \) \[AIEEE 2005 \]

(3) Let \(A \) and \(B \) be two events such that \(P(\overline{A} \cap \overline{B}) = \frac{1}{6} \), \(P(A \cap B) = \frac{1}{4} \) and \(P(\overline{A}) = \frac{1}{4} \), where \(\overline{A} \) stands for complement of event \(A \). Then events \(A \) and \(B \) are

(a) equally likely and mutually exclusive
(b) equally likely but not independent
(c) independent but not equally likely
(d) mutually exclusive and independent \[AIEEE 2005 \]

(4) Let \(x_1, x_2, \ldots, x_n \) be \(n \) observations such that \(\sum x_i^2 = 400 \) and \(\sum x_i = 80 \). Then a possible value of \(n \) among the following is

(a) 15 \(\frac{1}{b} \) 18 \(c \) 9 \(d \) 12 \[AIEEE 2005 \]

(5) Probability that \(A \) speaks truth is \(\frac{4}{5} \) while this probability for \(B \) is \(\frac{3}{4} \). The probability that they contradict each other when asked to speak on a fact is

(a) \(\frac{3}{20} \) \(\frac{1}{5} \) \(\frac{7}{20} \) \(\frac{4}{5} \) \[AIEEE 2004 \]

(6) The mean and variance of a random variable \(x \) having a binomial distribution are 4 and 2 respectively. Then \(P(X = 1) \) is

(a) \(\frac{37}{256} \) \(\frac{219}{256} \) \(\frac{128}{256} \) \(\frac{28}{256} \) \[AIEEE 2004 \]
(7) A random variable X has the following probability distribution.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(X)</td>
<td>0.15</td>
<td>0.23</td>
<td>0.12</td>
<td>0.10</td>
<td>0.20</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

For the events $E = \{X \text{ is a prime number}\}$ and $F = \{X < 4\}$, the probability $P(E \cup F)$ is

(a) 0.87 (b) 0.77 (c) 0.35 (d) 0.50 \[AIEEE 2004\]

(8) The events A, B, C are mutually exclusive events such that $P(A) = \frac{3x + 1}{3}$, $P(B) = \frac{1 - x}{4}$ and $P(C) = \frac{1 - 2x}{2}$. The set of possible values of x are in the interval

(a) $\left[\frac{1}{3}, \frac{2}{3}\right]$ (b) $\left[\frac{1}{3}, \frac{3}{3}\right]$ (c) $\left[\frac{2}{3}, \frac{1}{3}\right]$ (d) $[0, 1]$ \[AIEEE 2003\]

(9) Five horses are in a race. Mr. A elects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is

(a) $\frac{4}{5}$ (b) $\frac{3}{5}$ (c) $\frac{1}{5}$ (d) $\frac{2}{5}$ \[AIEEE 2003\]

(10) The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively. Then, $P(X = 1)$ is

(a) $\frac{32}{32}$ (b) $\frac{1}{16}$ (c) $\frac{1}{8}$ (d) $\frac{1}{4}$ \[AIEEE 2003\]

(11) The probabilities of a student getting Ist, IInd and IIIrd division in an examination are respectively $\frac{1}{10}$, $\frac{3}{5}$ and $\frac{1}{4}$. The probability, that a student fails in the examination is

(a) $\frac{197}{200}$ (b) $\frac{27}{100}$ (c) $\frac{83}{100}$ (d) $\frac{33}{200}$ \[AIEEE 2002\]

(12) A bag contains 4 red and 3 black balls. A second bag contains 2 red and 4 black balls. One bag is selected at random. If from the selected bag one ball is drawn, then the probability that the ball drawn is red is

(a) $\frac{1}{42}$ (b) $\frac{3}{41}$ (c) $\frac{9}{42}$ (d) $\frac{19}{42}$ \[AIEEE 2002\]
14 - PROBABILITY

(Answers at the end of all questions)

(13) A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, then the probability that it is rusted or a nail is

(a) \(\frac{3}{16} \) (b) \(\frac{5}{16} \) (c) \(\frac{11}{16} \) (d) \(\frac{14}{16} \)

[AIEEE 2002]

(14) A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that both the socks are of the same colour is

(a) \(\frac{9}{108} \) (b) \(\frac{18}{108} \) (c) \(\frac{36}{108} \) (d) \(\frac{48}{108} \)

[AIEEE 2002]

(15) A 6-faced fair dice is rolled repeatedly till 1 appears for the first time. The probability that the dice is rolled for even number of times is

(a) \(\frac{1}{6} \) (b) \(\frac{5}{36} \) (c) \(\frac{6}{11} \) (d) \(\frac{5}{11} \)

[IIT 2005]

(16) Three distinct numbers are chosen randomly from first 100 natural numbers, then the probability that all are divisible by 2 and 3 both is

(a) \(\frac{4}{33} \) (b) \(\frac{35}{1155} \) (c) \(\frac{4}{25} \) (d) \(\frac{4}{1155} \)

[IIT 2004]

(17) Two numbers are chosen from \(\{1, 2, 3, 4, 5, 6\} \) one after another without replacement. Find the probability that the smaller of the two is less than 4.

(a) \(\frac{4}{5} \) (b) \(\frac{1}{15} \) (c) \(\frac{1}{5} \) (d) \(\frac{14}{15} \)

[IIT 2003]

(18) If \(P(B) = \frac{3}{4} \), \(P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3} \) and \(P(A \cap B \cap \overline{C}) = \frac{1}{3} \), then \(P(B \cap C) \) is

(a) \(\frac{1}{12} \) (b) \(\frac{3}{4} \) (c) \(\frac{5}{12} \) (d) \(\frac{23}{36} \)

[IIT 2003]

(19) If the integers \(m \) and \(n \) are chosen at random between 1 and 100, then the probability that the number of the form \(7^m + 7^n \) is divisible by 5 equals

(a) \(\frac{1}{4} \) (b) \(\frac{1}{7} \) (c) \(\frac{1}{8} \) (d) \(\frac{1}{49} \)

[IIT 1999]
20) The probabilities that a student passes in Mathematics, Physics and Chemistry are \(m, p \) and \(c \) respectively. Of these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two and 40% chance of passing in exactly two. Which of the following relations are true?

(a) \(p + m + c = \frac{19}{20} \)
(b) \(p + m + c = \frac{27}{20} \)
(c) \(pmc = \frac{1}{10} \)
(d) \(pms = \frac{1}{4} \)

[IIT 1999]

21) If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn is

(a) \(\frac{13}{32} \)
(b) \(\frac{1}{4} \)
(c) \(\frac{1}{32} \)
(d) \(\frac{3}{16} \)

[IIT 1998]

22) A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss equals

(a) \(\frac{1}{2} \)
(b) \(\frac{1}{32} \)
(c) \(\frac{31}{32} \)
(d) \(\frac{1}{5} \)

[IIT 1998]

23) Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals

(a) \(\frac{1}{2} \)
(b) \(\frac{7}{15} \)
(c) \(\frac{2}{15} \)
(d) \(\frac{1}{3} \)

[IIT 1998]

24) \(E \) and \(F \) are events with \(P(\ E \) \(\leq P(\ F) \) and \(P(\ E \cap F) > 0 \), then

(a) occurrence of \(E \Rightarrow \) occurrence of \(F \)
(b) occurrence of \(F \Rightarrow \) occurrence of \(E \)
(c) non-occurrence of \(E \Rightarrow \) non-occurrence of \(F \)
(d) none of the above implications holds

[IIT 1998]

25) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is

(a) \(\frac{1}{3} \)
(b) \(\frac{1}{6} \)
(c) \(\frac{1}{2} \)
(d) \(\frac{1}{4} \)

[IIT 1998]
26) If \bar{E} and \bar{F} are the complementary events of the events E and F respectively and if $0 < P(F) < 1$, then

(a) $P(E/F) + P(\bar{E}/F) = 1$
(b) $P(E/F) + P(E/\bar{F}) = 1$
(c) $P(\bar{E}/F) + P(E/\bar{F}) = 1$
(d) $P(E/\bar{F}) + P(\bar{E}/\bar{F}) = 1$
[IIT 1998]

27) If for the three events A, B and C, P (exactly one of the events A or B occurs) = P (exactly one of the events B or C occurs) = P (exactly one of the events C or A occurs) = p and P (all the three events occur simultaneously) = p^2, where $0 < p < \frac{1}{2}$, then the probability of at least one of the three events A, B and C occurring is

(a) $\frac{3p + 2p^2}{2}$
(b) $\frac{p + p^2}{4}$
(c) $\frac{p + p^2}{4}$
(d) $\frac{3p + 2p^2}{4}$
[IIT 1996]

28) Three of the six vertices of a regular hexagon are chosen at random. The probability that the triangle with these three vertices is equilateral equals

(a) $\frac{1}{2}$
(b) $\frac{1}{5}$
(c) $\frac{1}{10}$
(d) $\frac{1}{20}$
[IIT 1995]

29) The probability of India winning a test match against West Indies is $\frac{1}{2}$. Assuming independence from match to match, the probability that in a 5 match series India’s second win occurs at the third test is

(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{2}{3}$
[IIT 1995]

30) $0 < P(A) < 1$, $0 < P(B) < 1$ and $P(A \cup B) = P(A) + P(B) - P(A)P(B)$, then

(a) $P(B/A) = P(B) - P(A)$
(b) $P(A' \cup B') = P(A') + P(B')$
(c) $P(A \cup B') = P(A')P(B')$
(d) $P(A/B) = P(A)$
[IIT 1995]

31) An unbiased die with faces marked 1, 2, 3, 4, 5 and 6 is rolled four times. Out of four face values obtained, the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5 is then,

(a) $\frac{16}{81}$
(b) $\frac{1}{81}$
(c) $\frac{80}{81}$
(d) $\frac{65}{81}$
[IIT 1993]
(32) Let E and F be two independent events. If the probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$, then $P(E)$ and $P(F)$ respectively are

(a) $\frac{1}{3} \cdot \frac{1}{4}$
(b) $\frac{1}{2} \cdot \frac{1}{6}$
(c) $\frac{1}{6} \cdot \frac{1}{2}$
(d) $\frac{1}{4} \cdot \frac{1}{3}$

[IIT 1993]

(33) India plays two matches each with West Indies and Australia. In any match, the probabilities of India getting points 0, 1 and 2 are 0.45, 0.50 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is

(a) 0.8750
(b) 0.0875
(c) 0.0625
(d) 0.0250

[IIT 1992]

(34) For any two events A and B in a sample space,

(a) $P\left(\frac{A}{B} \right) \geq \frac{P(A) + P(B) - 1}{P(B)}$, if $P(B) \neq 0$ is always true

(b) $P(\overline{A}) = P(A) - P(\overline{A})P(B)$ does not hold

(c) $P(A \cup B) = 1 - P(\overline{A})P(B)$, if A and B are independent

(d) $P(A \cup B) = 1 - P(A)P(\overline{B})$, if A and B are disjoint

[IIT 1991]

(35) If E and F are independent events such that $0 < P(E) < 1$ and $0 < P(F) < 1$, then

(a) E and F are mutually exclusive

(b) E and F^c (the complement of event F) are independent

(c) E^c and F^c are independent
(d) $P(E/F) + P(E^c/F) = 1$

[IIT 1989]

(36) One hundred identical coins, each with probability p, of showing heads are tossed once. If $0 < p < 1$ and the probability of heads showing on 50 coins is equal to heads showing on 51 coins, then the value of p is

(a) $\frac{1}{2}$
(b) $\frac{49}{101}$
(c) $\frac{50}{101}$
(d) $\frac{51}{101}$

[IIT 1988]

(37) For two events A and B, $P(A \cup B)$ is

(a) not less than $P(A) + P(B) - 1$
(b) not greater than $P(A) + P(B)$

(c) equal to $P(A) + P(B) - P(A \cup B)$
(d) equal to $P(A) + P(B) + P(A \cup B)$

[IIT 1988]

www.schoolnotes4u.com
(38) The probability that at least one of the events A and B occur is 0.6. If A and B occur simultaneously with probability 0.2, then $P(\overline{A}) + P(\overline{B})$ is

(a) 0.4 (b) 0.8 (c) 1.2 (d) 1.4 (e) none of these [IIT 1987]

(39) A student appears for tests I, II and III. The student is successful if he passes either in tests I and II or tests I and III. The probabilities of the student passing in tests I, II and III are p, q and $\frac{1}{2}$ respectively. If the probability that the student is successful is $\frac{1}{2}$, then

(a) $p = q = 1$ (b) $p = q = \frac{1}{2}$ (c) $p = 0, q = 0$

(d) $p = 1, q = \frac{1}{2}$ (e) none of these [IIT 1986]

(40) Three identical dice are rolled. The probability that the same number will appear on each of them is

(a) $\frac{1}{6}$ (b) $\frac{1}{36}$ (c) $\frac{1}{18}$ (d) $\frac{3}{28}$ [IIT 1984]

(41) If M and N are two events, the probability that exactly one of them occurs is

(a) $P(M) + P(N) - 2P(M \cap N)$ (b) $P(M) + P(N) - P(M \cap N)$

(c) $P(M^c) + P(N^c) - 2P(M^c \cap N^c)$ (d) $P(M \cap N^c) + P(M^c \cap N)$ [IIT 1984]

(42) Fifteen coupons are numbered 1, 2, ..., 15, respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9, is

(a) $\left(\frac{9}{16} \right)^6$ (b) $\left(\frac{8}{15} \right)^7$ (c) $\left(\frac{3}{5} \right)^7$ (d) none of these [IIT 1983]

(43) If A and B are two events such that $P(A) > 0$ and $P(B) \neq 1$, then $P(\overline{A} \mid \overline{B})$ is equal to

(a) $1 - P(A \mid B)$ (b) $1 - P(\overline{A} \mid B)$

(c) $\frac{1 - P(A \cup B)}{P(B)}$ (d) $\frac{P(\overline{A})}{P(\overline{B})}$ [IIT 1982]
14 - PROBABILITY
(Answers at the end of all questions)

(44) Two fair dice are tossed. Let X be the event that the first die shows an even number, and Y be the event that the second die shows an odd number. The two events X and Y are

(a) mutually exclusive (b) independent and mutually exclusive (c) dependent (d) none of these

[IIT 1979]

(45) There are n persons ($n \geq 3$), among whom are A and B, who are made to stand in a row in random order. Probability that there are exactly r ($r \leq n - 2$) persons between A and B is

$$\frac{n - r}{n(n - 1)} \quad \frac{n - r - 1}{n(n - 1)} \quad \frac{2(n - r - 1)}{n(n - 1)} \quad \frac{2r}{n}$$

(a) (b) (c) (d)

(46) There are 8 players from which four teams each of two players are formed. What is the probability that two specific players are in one team?

$$\frac{1}{4} \quad \frac{15}{28} \quad \frac{1}{8} \quad \frac{1}{7}$$

(a) (b) (c) (d)

(47) A natural number is selected from the first 20 natural numbers. The probability that

$$\frac{x^2 - 15x + 50}{x - 15} < 0$$

is

$$\frac{1}{5} \quad \frac{2}{5} \quad \frac{3}{5} \quad \frac{4}{5}$$

(a) (b) (c) (d)

Answers

1234567891011121314151617181920
b c c b c d b a d a b d d d a a a a b

2122232425262728293031323334353637383940
a a b d b a d a c b c a d a d b a c b c d d a b c c c b

4142434445464748495051525354555657585960
a c d c c d c d b

www.examrace.com